Stereospecific, Transition Metal-mediated Synthesis of Unsymmetrical *cis* Olefinic Diphosphines

By DAVID K. JOHNSON and ARTHUR J. CARTY*

(Guelph-Waterloo Centre for Graduate Work in Chemistry, Waterloo Campus, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1)

Summary Rigid, unsymmetrical cis olefinic diphosphines $Ph_2PCH=C(R^1)PR^2R^3$ can be synthesised in good yields by the stereospecific addition of secondary phosphines R^2R^3PH across the triple bond of a phosphorus coordinated phosphinoacetylene in cis-MCl₂(Ph₂PC=CR)₂ (M = Pd or Pt); a fundamental change in coupling through the metal atom is responsible for the sequence of $J^{31}P^{-31}P$ values (Ni>>Pd>Pt) in d^8 complexes of $Ph_2PCH=C(R^1)PR^2R^3$.

THE synthesis and co-ordination chemistry of rigid ditertiary phosphines have recently assumed renewed importance with the development of transition metal based asymmetric catalytic systems for the production of optically pure steroids and amino-acids.¹ We report a novel synthetic route (Scheme) to symmetrical or unsymmetrical, rigid

SCHEME. i, CH₂Cl₂. ii, Excess CN⁻, H₂O-C₆H₆; in a typical experiment the platinum chloride complex (1 g) and KCN (12 g) were heated to reflux overnight in C₆H₆ (250 ml) and degassed water (120 ml). The organic layer was separated, dried over MgSO₄, filtered, and evaporated to give the diphosphine.

TABLE Yields and ³¹P n.m.r. parameters^a for selected diphosphines and their complexes.^b

				PPh_2		PR ² R ³		
	Compound		Yield/%	δ	$J^{(195}Pt^{31}P)$	δ	${1}J(^{195}Pt_{31}P)$	J(P-P)
(1)	$cis-Ph_2PCH=C(CF_3)PPh_2$		55	-26.3		-18.0		131
(2)	$cis-Ph_2PCH=C(Ph)PPh_2$	••	88	-28.1		-7.0		146
(3)	$cis-Ph_2PCH=C(But)PPh_2$	••	77	$-32 \cdot 2$		-14.8		37
(4)	$cis-Ph_2PCH=C(CF_3)PEtPh$		70	-25.8		$-25 \cdot 8$		с
(5)	$cis-Ph_2PCH=C(Ph)PEtPh$	• •	92	-27.8		$-21 \cdot 1$		146
(6)	cis-Ph ₂ PCH=C(Bu ^t)PEtPh	••	61	-32.5		-15.8		45
(7)	$cis-Ph_2PCH=C(Bu^t)P(C_2H_4CN)_2$	••	90	-35.5		-25.0		18
(8)	$Cl_2Ni \{Ph_2PCH=C(Ph)PPh_2\}$		53	46 ·0		69.3		69
(9)	$Cl_2Ni \{Ph_2PCH=C(Bu^t)PPh_2\}$		49	43.8		$72 \cdot 1$		71
(10)	$Cl_2Pd \{Ph_2PCH=C(CF_3)PPh_2\}$		61	56.6		73.6		21
(11)	$Cl_2Pd \{Ph_2PCH=C(Ph)PPh_2\}$	••	52	$51 \cdot 1$		75.6		15
(12)	$Cl_2Pd \{Ph_2PCH=C(Ph)P(C_2H_4CN)_2\}$		80	$53 \cdot 6$		81.7		13
(13)	$Cl_2Pt\{Ph_2PCH=C(Ph)PPh_2\}$		86	30.5	3552	$53 \cdot 1$	3640	$<\!2$
(14)	$Cl_2Pt{Ph_2PCH=C(Bu^t)PPh_2}$	••	85	$25 \cdot 9$	3425	$53 \cdot 2$	3613	${<}2$
(15)	$Cl_2Pt \{Ph_2PCH=C(Ph)PEtPh\}$	•••	68	30.4	3640	55.5	3554	${<}2$

^a Shifts are in p.p.m. relative to external 85% H_3PO_4 (downfield +). J values are in Hz. ^b Yields of diphosphines are based on $Cl_2Pt\{Ph_2PCH=C(R)PR^2R^3)$. ^c A_2 spectrum; J(P-P) was not observed.

olefinic diphosphines and their square-planar complexes which involves the stereospecific addition of a secondary phosphine across the triple bond of a co-ordinated phosphinoacetylene. A wide range of new, cis olefinic diphosphines with differing steric and electronic characteristics can be prepared. Furthermore, the method has potential for the introduction of chirality at phosphorus (cf. entries 4-6 and 15 in the Table) or at an olefinic substituent. Direct observation of ³¹P-³¹P coupling in the ³¹P n.m.r. spectra of unsymmetrical complexes provides a valuable structural probe. Finally, the reactivity of the uncoordinated acetylenic triple bond in phosphinoacetylene complexes, illustrated here for P-H additions, should be capable of further exploitation.

The easy room temperature addition[†] (Scheme) generates stereospecifically, in high yield, cis-diphosphines, in sharp contrast to the base catalysed, elevated temperature addition to 'free' Ph2PC=CH which gives only unwanted trans-Ph₂PCH=CHPPh₂² which cannot behave as a chelating ligand. The new cis ligands Ph₂PCH=C(R¹)PR²R³ (Table) are colourless crystalline solids (e.g., $R^1 = Bu^{t}$, $R^2 = Et$, $R^3 = Ph; R^1 = Bu^{t}, R^2 = R^3 = Ph; R^1 = R^2 = Ph, R^3 =$ Bu^t; and $R^1 = CF_3$, $R^2 = R^3 = Ph$) or oils (e.g., $R^1 = R^2$ $= R^3 = Ph; R^1 = CF_3, R^2 = Et, R^3 = Ph; and R^1 = CF_3,$ $R^2 = R^3 = CH_2CH_2CN$ while the highly crystalline *cis* complexes are red (M = Ni), pale yellow (M = Pd), or colourless (M = Pt). The method of synthesis should be applicable to other d^8 phosphinoacetylene complexes or cis-bis(phosphinoacetylene) M⁰ derivatives.

Data on cis ³¹P-³¹P coupling constants for nickel triad complexes are sparse and factors influencing J(P-P) are poorly understood.³ The availability of a variety of

diphosphines and isostructural, monometallic M^{II} complexes throughout the range of combinations of R¹, R², R³, and M permitted by the synthetic method allowed a systematic study of J(P-P) magnitudes (Table). Within the free ligands ${}^{3}J(P-P)$ is, unexpectedly, determined largely by the olefinic substituent rather than the groups on phosphorus. The absolute magnitude of J(P-P) in MCl₂{Ph₂PCH=C(R¹)-PR²R³} decreases in sequence Ni>>Pd>Pt. Similar, but much less dramatic trends in J(P-P) have very recently been noted for $M(CO)_4L_2$ (M = Cr, Mo, or W).^{4,5}

Consideration of the large ${}^{3}J(P-P)$ values in Ph₂PCH=C- $(R^1)PR^2R^3$ $(R^1 = CF_3 \text{ or } Ph, R^2 = R^3 = Ph)$ and values in the corresponding Ni, Pd, and Pt complexes suggests a massive reduction in 'backbone' ³¹P-³¹P coupling on complexation. Furthermore, analysis of ³ *I*(P-P) in Ph₂PCH=C- $(Bu^{t})PPh_{2}$ (37 Hz) and its complexes [I(P-P)] does not differ significantly from values for complexes of the other ligands] implies that 'backbone' contributions to J(P-P)are uniform. More importantly, since J(P-P) values are very similar for the series cis-MCl₂{Ph₂PCH=C(R¹)PR²R³} and $cis-MCl_2(Ph_2PCH_2CH_2PMe_2)^4$ (73 ± 4 for M = Ni; 15 ± 5 for M = Pd; and < 2 for M = Pt), it is apparent that a fundamental change in coupling through the metal is responsible for the sequence of |J(P-P)| values Ni>>Pd> Pt. These results may have important ramifications for metal-phosphorus bonding in the nickel triad.

(Received, 24th August, 1977; Com. 899.)

† Additions were made at 195 K and reaction mixtures were allowed to warm up to room temperature.

¹ See, for example, T. P. Dang, and H. B. Kagan, J. Amer. Chem. Soc., 1972, 94, 6429; W. S. Knowles, M. J. Sabacky, B. D. Vineyard, and D. J. Weinkauff, *ibid.*, 1975, 97, 2567; K. Achiwa, *ibid.*, 1976, 98, 8265; W. S. Knowles, M. J. Sabacky, and B. D. Vineyard, J.C.S. Chem. Comm., 1972, 10; G. Gelbard, H. B. Kagan, and R. Sern, Tetrahedron, 1976, 32, 233.

² R. B. King and P. N. Kapoor, J. Amer. Chem. Soc., 1971, 93, 4158.
³ E. G. Finer and R. K. Harris, Progr. NMR Spectroscopy, 1970, 6, 61.

⁴S. O. Grim, R. C. Barth, J. D. Mitchell, and J. Del Gaudio, Inorg. Chem., 1977, 16, 1776.

⁵ R. B. King and J. C. Cloyd, Jr., Inorg. Chem., 1975, 14, 1550.